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Pain is generally considered to consist of at least two 
distinct dimensions, the sensory-discriminative compo-
nent and the motivational-affective component 
(Melzack & Casey, 1968). The sensory-discriminative 
component encompasses qualities such as the 
intensity, location, and descriptive qualities of pain. 
The motivational-affective component may be charac-
terized as “unpleasantness,” representing the negative 
valence which motivates the behavior evoked by pain, 
and generating pain’s affective tone (LeDoux, 1996; 
Price, 2000). Evidence suggesting the presence of a 
discrete motivational-affective component of pain 
were deri ved from the early observations of analgesia 
after cingulotomy. Specifi cally, after lesions involving 
the anterior cingulate cortex (ACC – anterior to the 
marginal branch of the cingulate sulcus which 
includes midcingulate cortex – MCC –) patients with 
chronic pain reported that they continued to have pain, 
but that it was “not particularly bothersome” (Foltz 
& White, 1962). This observation led to the conclu-
sion that the ACC is involved in the motivational-
affective component of pain. Many observations 
since that time have demonstrated that the cingulate 
gyrus has a role in pain unpleasantness, attention, and 
cognition.
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The mechanisms of corticocortical processing 
are poorly understood; particularly in terms of parietal 
lobe interactions and it has not been clear to what 
extent pain activation and attention mechanisms 
drive similar parts of the cingulate gyrus. Attention-
related tasks such as verbal fl uency or Stroop (Lezak, 
1995) activate MCC based on group analysis and direct 
comparisons indicate separate regions within the ACC 
for attention versus pain-related activation (Davis 
et al., 1997; Derbyshire et al., 1998). We have used laser-
evoked potentials (LEPs) in conjunction with subdural 
recording electrodes to evaluate the nociceptive 
properties of cingulate cortex. Analysis of LEPs 
indicates that the MCC encodes pain intensity and is 
modulated by attention. Cortical activation, as meas-
ured by ERD, is modulated by the analgesic effect of 
distraction, independent of the distraction task. 
Although the precise pathways by which somatosensory 
and cingulate cortices interact are still unknown, these 
fi ndings of the various functional imaging modalities 
provide a platform for exploring these issues with great 
precision.

Goals of the Chapter
This chapter describes the role of the ACC in primate 
pain processing and in the treatment of pain. It reviews 
the physiology of pain pathways to the ACC via the 
medial thalamus and modulation of these inputs by 
the ACC are related to pain sensation or pain-related 
behaviors. Finally, we review the effect of lesions of 
the cingulate gyrus on chronic and experimental pain. 
The focus is on human studies when available.

Anatomy
The spinothalamic tract (STT) is the classic nociceptive 
pathway associated with the sensation of pain (Perl, 
1984; Willis, 1985). Afferent Aδ and C fi bers enter the 
spinal cord and ascend or descend lateral to the dorsal 
rootlets as Lissaur’s tract. They then enter the dorsal 
horn and synapse in the superfi cial lamina (Rexed I) or 
deep laminae (III to V) of the dorsal horn. The fi bers 
of the spinal neurons then cross to the contralateral 
portion of the spinal cord via the anterior white 
commissure to travel to the thalamus and forebrain 
limbic structures. The STT consists of two components: 
one in the ventral lateral spinal funiculus, and the 
other in the dorsal lateral funiculus (Apkarian & Hodge, 
1989a, 1989b; Cusick et al., 1989; Craig, 1991; Ralston & 
Ralston, 1992). The axons of the cells arising in the 
deeper spinal lamina project via the ventral lateral 
funiculus, and the axons of the cells arising from the 
more superfi cial lamina project via the dorsal lateral 
funiculus (Apkarian & Hodge, 1989a). There is also 

evidence that primary afferent nociceptive fi bers aris-
ing from viscera synapse on neurons near the central 
canal and ascend in the midline of the posterior funicu-
lus as the post-synaptic dorsal column pathway (Vierck 
& Luck, 1979; Vierck et al., 1990; Nagaro et al., 1993; 
Willis et al., 1999).

Human STT terminations have been demonstrated 
by silver staining at autopsy in patients post-cordotomy. 
These STT terminations are in thalamic nuclei includ-
ing the intralaminar nuclei, (central lateral and parafas-
cicular), and the medial dorsal nucleus (Mehler, 1962, 
1969). Quantitative analysis suggests that the termi-
nations of the dorsal and ventral parts of the STT are 
largely overlapping in these nuclei in monkeys 
(Apkarian & Hodge, 1989b). STT terminations are also 
found in striatal structures and in limbic structures 
such as the hypothalamus and the amygdala (Newman 
et al., 1996).

Silver staining at autopsy in patients with thalamic 
lesions suggests that the cingulate cortex anterior to 
the marginal branch of the cingulate sulcus (Fig. 18.1) 
receives input from medial, pain-related thalamic 
nuclei (Van Buren & Borke, 1972). These include the 
parafascicular and the medial dorsal nuclei, both of 
which receive STT input (Mehler, 1962, 1969). In mon-
keys, Brodmann’s area 24 of the ACC receives inputs 
from the intralaminar nuclei (central lateral and para-
fascicular) and subnuclei of the mediodorsal nucleus 
(parvocellular and densocellular; Vogt et al., 1987; 
Chapters 4 and 14) which receive STT inputs (Mehler 
et al., 1960; Kerr, 1975; Berkley, 1980; Burton & Craig, 
1983; Apkarian & Hodge, 1989b).

Functional Imaging
The advent of functional imaging has greatly advanced 
our understanding of the cortical areas involved in 
pain processing. Positron emission tomography (PET) 
and functional magnetic resonance imaging (fMRI) 
studies have shown multiple areas of increased region-
al cerebral blood fl ow (rCBF) or blood oxygenation 
level-dependent (BOLD) signal increases in response to 
painful stimuli. These cortical areas include: the prima-
ry somatosensory cortex (SI), cortex around the sylvian 
fi ssure (PS, parasylvian cortex), prefrontal cortex, sup-
plementary motor area (SMA) and the cingulate gyrus. 
These studies provide evidence to support the role of 
the midcingulate cortex (MCC), just anterior to the cen-
tral sulcus in the processing of pain (Jones et al., 1991; 
Talbot et al., 1991; Casey et al., 1994, 1996; Coghill et al., 
1994; Craig et al., 1996; Vogt et al., 1996; Derbyshire 
et al., 1997; Rainville et al., 1997; Ploghaus et al., 1999; 
Lorenz et al., 2003; Moulton et al., 2005).

Activation during noxious stimulation has been 
identifi ed in multiple locations within the cingulate 
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cortex anterior to the marginal branch of the cingulate 
sulcus as shown in Figure 18.1 (Davis et al., 1995, 1997; 
Rainville et al., 1997; Becerra et al., 1999; Ploghaus et al., 
1999; Moulton et al., 2005). These studies have also dem-
onstrated widespread cortical areas apparently encod-
ing the actual and perceived intensity of the noxious 
stimulus (Coghill et al., 1997, 1999).

Imaging studies have also demonstrated functional 
differences which depend on location along the 
rostral-caudal axis of the cingulate gyrus. Pain-related 
cerebral blood fl ow increase or BOLD activation is 
frequently found in the MCC (Hsieh et al., 1995; Davis 
et al., 1997; Derbyshire & Jones, 1998). This area is also 
activated when the unpleasantness of pain is increased 
by hypnosis, without altering the intensity of the pain 
(Rainville et al., 1997).

Attention related tasks (e.g. verbal fl uency or Stroop; 
Lezak, 1995) activate MCC based on group analysis, but 
individual responses showed more widespread activa-
tion of the medial frontal cortex [Davis et al., 1997; 
Derbyshire et al., 1998). Direct comparisons indicate 
separate regions within the ACC for attentional versus 
pain-related activation [Davis et al., 1997; Derbyshire 

et al., 1998). ACC is activated when subjects experience 
capsaicin-induced heat allodynia, but not when experi-
encing normal (non-sensitized) heat pain (Lorenz 
et al., 2002) However, the ACC can be activated by the 
expectation of pain (Ploghaus et al., 1999), anxiety sur-
rounding pain (Ploghaus et al., 2001), or by intravenous 
opiates (Wagner et al., 2001).

Neurophysiology
Animal and human electrophysiologic evidence also 
supports the role of the medial thalamus and cingulate 
gyrus in pain processing. The presence of neurons 
which respond to painful stimuli has been demonstrated 
in the medial thalamus (Bushnell & Duncan, 1989). 
Anatomic confi rmation of such cells has been demon-
strated in the central lateral, the parafascicular, and 
the medial dorsal nuclei of monkeys (Perl & Whitlock, 
1961; Casey, 1966). In monkeys, these cells responded 
exclusively to noxious stimulation in large receptive 
fi elds (Perl & Whitlock, 1961; Casey, 1966), although 
during some states of consciousness, there was conver-
gence with other sensory modalities.

403 neurophysiology

Fig. 18.1 Topographical representation of LEPs over the right medial wall in response to stimulation of the contralateral face. Traces 
0–500 ms; vertical line at 250 ms. Stimulation evoked movements of arm and leg as indicated in the list of symbols. CC – corpus callosum, 
CG – cingulate gyrus, CiS – cingulate sulcus, CS – central sulcus, MCiS – marginal branch of the cingulate sulcus, posterior margin of the 
paracental lobule composed of the pre- and post-central gyri, MF – medial frontal including anterior and middle CG, PCL - paracentral lobule 
composed of the pre- and post-central gyri. Adapted from Lenz et al. (1998b).
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Studies of human medial thalamus have identifi ed 
nociceptive neurons in the central median/parafascicu-
laris nuclear complex (Sano et al., 1970; Ishijima et al., 
1975; Tsubokawa & Moriyasu, 1975). One group of 
cells responded in a short latency to the application of 
noxious stimuli. A second group of cells responded 
following a long latency and showed prolonged after-
discharges. Both types of cells had receptive fi elds that 
were large and often bilateral. Analogous neurons in 
the monkey medial thalamus showed the capacity to 
encode noxious stimulus intensity, despite having large, 
spatially diffuse receptive fi elds (Bushnell & Duncan, 
1989). Thus, these cells may be involved in the intensity 
discriminative aspect of pain. Nociceptive cells were 
not reported in more recent human microelectrode 
studies, apparently directed toward the same nuclei 
(Rinaldi et al., 1991; Jeanmonod et al., 1993).

Pain has been reported in response to stimulation of 
the medial thalamus during thalamotomy in patients 
with chronic pain (Sugita et al., 1972; Sano, 1979). Two 
types of stimulation-evoked sensation have been 
reported following stimulation in medial thalamus 
(Sano, 1979). The fi rst type was described as a diffuse, 
burning pain referred to the contralateral half of the 
body or on occasion the whole body which may have 
been evoked by stimulation of the central median/
parafascicularis nuclei. The patient’s chronic pain was 
said to be exacerbated by stimulation at these sites. The 
second type of sensation was a generalized “unpleas-
ant” sensation, not localized to a particular body part 
which may have been evoked by stimulation of the 
medial dorsal and periventricular nuclei. Stimulation-
evoked pain was not reported in the more recent 
human microelectrode studies directed toward the 
medial and intralaminar thalamus (Rinaldi et al., 1991; 
Jeanmonod et al., 1993).

Cortical responses to noxious stimuli have been 
reported in human and animal studies. Neurons in ACC 
of rabbits and rats respond to noxious stimuli (Sikes & 
Vogt, 1992; Yamamura et al., 1996). Based on observa-
tions made just prior to cingulotomy, neurons in the 
human ACC responded to painful cutaneous stimuli or 
to pain-related events, e.g. observation or anticipation 
of the application of a painful stimulus (Hutchison 
et al., 1999). Similar anticipatory and nociceptive neuro-
nal responses were recorded in the ACC of monkeys 
while performing an avoidance task (Koyama et al., 
1998).

Figure 18.1 demonstrates the presence of nociceptive 
activity in the ACC based on EEG potentials recorded 
directly from the cortex (electrocorticography) in 
response to application of a noxious cutaneous laser 
(laser evoked potentials – LEPs; Lenz et al., 1998b). These 
consist of a negative wave (N2) followed by a positive 
wave (P2). Scalp LEPs having vertex maximums (Carmon 

et al., 1978; Bromm & Treede, 1984) may arise in part 
from generators in the ACC, as assessed by scalp source 
analysis (Tarkka & Treede, 1993; Chen & Bromm, 1995; 
Kitamura et al., 1995).

LEP N2 and P2 peaks were also recorded from high 
lateral convexity near the primary somatic sensory 
cortex hand area (SI region, Fig. 18.2), and near the 
sylvian fi ssure (parasylvian region; Ohara et al., 2004a). 
LEP N2 and P2 peaks in the SI region were distributed 
over both pre- and post-central cortical areas. For the PS 
cortex, both N2 and P2 were maximal near the junction 
of central sulcus and sylvian fissure with polarity 
reversal (Fig. 18.2A and B). Over the medial frontal 
region, both N2 and P2 peaks were distributed over 
the cingulate sulcus and the supplementary motor 
area, with polarity reversal near the cingulate sulcus 
(Lenz et al., 1998a; Vogel et al., 2003; Ohara et al., 2004a, 
2004b).

Neurophysiology of Attention to Pain
Using subdural grids placed over the medial wall of the 
cerebral hemispheres nociceptive input was localized 
to the MCC, just anterior to the marginal branch of 
the cingulate sulcus (Fig. 18.1). The location of this 
potential overlaps with that of attention-related acti-
vation reported in imaging studies (Davis et al., 1997; 
Derbyshire et al., 1998). This proximity has been con-
fi rmed in studies of LEPs, while the subject is either 
attending the laser stimulus (counting stimuli) versus 
distracted from the laser (reading for comprehension; 
Ohara et al., 2004c).

During attention versus distraction increased N2 and 
P2 peaks were observed over SI, PS and ACC (Fig. 3A). 
A late positive potential (LP, Fig. 3B) was recorded over 
ACC and dorsal area 6 (Lenz & Treede, 2002; Ohara 
et al., 2004c) only during attention to the laser. Thus, 
the LP potential has “an all or none” or binary quality 
and is not merely changed in degree with changes in 
the attentional state. The location of this peak was 
recorded within and dorsal to the ACC, consistent 
with the location, where binary pain-related activations 
have been observed in imaging studies of the response 
to painful stimuli (Coghill et al., 1999; Bornhovd et al., 
2002; Buchel et al., 2002).

Therefore, two types of attention-related effects upon 
laser-evoked potentials are demonstrated in Figure 18.3. 
The fi rst is the analog modulation of N2 and P2 waves 
which are increased during attention versus distraction 
(Fig. 18.3A, N2 and P2 peaks). The morphology and 
distribution of these peaks are clearly different from 
the binary potentials which are seen during attention 
but not during distraction (Fig. 18.3B, LP peaks). The 
emergence of potentials during attention that are 
absent during distraction (LP) in an ACC and dorsal 
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Fig. 18.2 Distribution of LEP 
N2* and P2** peaks over the 
convexity (A) and the medial 
surface (B) of the hemisphere. 
Signifi cant LEP N2* and P2** 
peaks were recorded from 
electrodes over SI, parasylvian 
and medial frontal regions. 
Sample LEP waveforms 
(recorded versus average 
reference) are shown for two 
electrodes in each region 
(marked 1–6 in the fi gurines). 
Note that the amplitudes of 
N2* (*) and P2** (**) at 
individual electrodes as well as 
the number of electrodes with 
signifi cant LEPs were graded 
with laser energy in all three 
regions. Representative LEP 
waveforms (recorded versus 
average reference) are also 
shown (marked 1–5 in the 
fi gurines). Note that there were 
no electrodes below the sylvian 
fi ssure in this patient. The 
amplitudes of N2* (*) and 
P2** (**) at individual 
electrodes as well as the 
number of electrodes with 
signifi cant LEPs were graded 
with laser energy in all three 
regions. Conventions as in 
Fig. 18.1. SF, sylvian fi ssure 
Adapted from Ohara et al. 
(2004).

 neurophysiology of attention to pain
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Fig. 18.3 Distribution of negative (N2 – not labeled)(A), positive P2 (A) and LP (B) peaks of the laser evoked subdural potential during 
attention and distraction conditions and representative waveforms. A, P2 peaks were recorded from primary somatosensory (Taliarich 
coordinates; Talairach & Tournoux, 1988) for SI: 37, −25, 59, PS: 63, -(12, -(6 and medial frontal including ACC (MF: -(1, -(16, 33) cortex regions. 
The amplitude of the P2** peak was strongly enhanced during the attention task. B, LP was recorded from the MF region and a part of the 
lateral premotor area (38, -(11, 48) only during the attention condition (counting the laser stimuli) but not the distraction condition. 
Schematic maps show the distribution of N2* amplitude during the attention condition. Note the clear N2* amplitude difference between 
attention (counting) and distraction (reading) conditions. Adapted from Ohara et al. (2004).
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premotor cortex suggests that these cortical areas are 
“sources”. A recent model defi nes “sources” as struc-
tures which are specific to attention and are not 
involved in other functions related to the task (Posner, 
2000). In the same model, “sites” are structures where 
attention acts during task performance to alter compu-
tations involved in the task (Posner, 2000), like the gain 
of LEPs which is increased during the attention task. 
Increased LEPs at SI, PS and ACC during directed 
attention may identify these cortical structures as 
“sites” for directed attention (Posner, 2000).

The ACC and dorsal premotor cortex may be “sources” 
for directed attention, consistent with their role as 
a part of the executive attentional system involved in 
target selection or response (Corbetta et al., 1991; Bench 
et al., 1993; Devinsky et al., 1995; Picard & Strick, 1996). 
This suggestion is consistent with the fi nding that 
cingulotomy impairs intention and spontaneous 
response production (Cohen et al., 1999).

The binary nature of attention-related LPs is 
reminiscent of the cortical potentials related to the 
alertness or attention evoked by infrequent events, like 
the P300 potential. The amplitude of the P300 for laser/
painful stimuli is independent of stimulus amplitude 
(Becker et al., 1993; Zaslansky et al., 1995; Bornhovd 
et al., 2002) and stimulus location. Therefore, the LP and 
P300 are both independent of stimulus amplitude, 
consistent with functional imaging studies demonstrat-
ing brain regions where the application of a specifi c, 
painful, stimulus activates the region, while further 
increases in stimulus intensity do not produce increased 
activation (Coghill et al., 1999; Bornhovd et al., 2002). The 
LP may indicate an alarm evoked by painful stimuli in 
somewhat the same way that the P300 indicates a state 
of alertness evoked by infrequent events (Picton, 1992; 
Lenz et al., 2000). The LP is evoked when the subject is 
required to detect (count) the painful stimulus, while 
the P300 occurs when the subject is required to detect 
the infrequent event (button push). Therefore, both 
potentials may be alarm signal attention or alertness 
which are triggered by a stimulus level but otherwise 
may be independent of stimulus parameters (Coghill 
et al., 1999; Bornhovd et al., 2002).

The studies of LEPs during attention versus distrac-
tion demonstrate attentional modulation of activity in 
the midcingulate gyrus (Fig. 18.3). Studies of cortical 
activation of the middle cingulate cortex also refl ects, 
not just the effect of distraction, but the analgesic effect 
of distraction. Our measure of cortical activation is 
event-related modulation of EEG spectral energy which 
has been demonstrated during multiple behaviors 
including movement (Pfurtscheller & Aranibar, 1977; 
Pfurtscheller, 1981; Stancak & Pfurtscheller, 1995; 
Pfurtscheller et al., 1996; Crone et al., 1998; Ohara et al., 
2000), vision (Tallon-Baudry et al., 1996), audition (Crone 

et al., 2001a), language (Crone et al., 2001b) and nocicep-
tion (Mouraux et al., 2003).

Event-related spectral EEG responses are analyzed 
over different frequency bands (Pfurtscheller, 1999) 
that exhibit different temporal-, spatial-, and task-
dependent response characteristics, suggesting that 
they refl ect different aspects of cerebral processing. 
For example, EEG spectral energy in the alpha range 
(8–13 Hz) are regionally suppressed (ERD) by task-
specifi c cortical processing (Pfurtscheller & Aranibar, 
1977; Tiihonen et al., 1991; Bastiaansen et al., 1999), 
but may also be modulated by attention (Boiten et al., 
1992; Klimesch et al., 1992, 1998; Dujardin et al., 1993; 
Sterman, 1999; Suffczynski et al., 2001).

In Figure 18.4A, the spatial distribution of alpha ERD 
overlapped but was not identical to that of the LEP 
peaks (N2*, P2** or both; Fig. 18.3B; Ohara et al., 2004), 
and was more widespread during the attention condi-
tion than during the distraction condition. This was 
particularly so when distraction was associated with a 
lower perceived pain intensity – an analgesic effect 
of distraction. Attention to the laser stimulus was asso-
ciated with more intense and widespread ERD over 
the PS region (Fig. 18.4A, left), where it was nearly 
absent with distraction, regardless of perceived inten-
sity (Fig. 18.4A, middle and right).

Under the distraction condition, there was a lower 
perceived intensity in one of the three runs even 
though the laser energy was constant across all three 
runs (Fig. 18.4A, middle and right panels; Ohara et al., 
2004). This lower perceived pain intensity, suggesting 
a greater analgesic effect of distraction was correlated 
with much less alpha ERD over medial frontal and SI 
cortices (Fig. 18.4, middle versus right) than the effect 
of distraction without analgesia (Fig. 18.4, left versus 
right).

The ERD results suggest that the MCC (posterior ACC) 
is also a “site” where distraction-related analgesic 
effects. This is consistent with the site of where an 
inverse relationship has been demonstrated between 
mu receptor binding and affective pain ratings result-
ing from administration of a tonic pain stimulus 
(Zubieta et al., 2001) PET blood fl ow increases after opi-
ate administration (Wagner et al., 2001) have been dem-
onstrated ACC, anterior to the site of ERD effects shown 
in Figure 18.4.

It is not surprising that LEPs are modulated by cogni-
tive processes like attention. However, LEP signals 
recorded over the medial frontal cortex are also related 
to stimulus intensity and/or the ratings of the intensity 
of the evoked pain. Figure 18.2 shows potentials record-
ed in response to three separate levels of energy (weak, 
medium and strong) of laser stimulation. N2 and P2 
peaks at the maxima over medial frontal, PS, and SI cor-
tex were both signifi cantly graded by energy and with 

 neurophysiology of attention to pain
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pain intensity ratings. Both PS and medial frontal 
regions seem less responsive to weak painful stimula-
tion than SI, because of lack of signifi cant peaks with 
the weak laser pulse. Thus, analysis of LEPs indicates 
that the MCC encodes pain intensity and is modulated 
by attention. Cortical activation, as measured by ERD, 
is modulated by the analgesic effect of distraction, inde-
pendent of the distraction task.

Experimental Lesion Studies
The rationale for cingulotomy for pain is related to 
imaging studies (see above) and to studies of rodent 
models of subacute or chronic pain (Donahue et al., 
2001; Lagraize et al., 2004; Senapati et al., 2005). A model 
of infl ammatory pain was produced by injection of for-
malin into the forepaw, and a model of neuropathic, 

Fig. 18.4 Spatial distributions of LEP N2*/P2** peaks during the attention condition and alpha ERD during the attention and two distraction 
conditions. During the attention condition, statistically signifi cant ERD in alpha range (6–12 Hz, 0-4-06s after laser onset) was distributed over 
the SI, PS and MF cortices (A, left column), which overlapped with, but not equal to, the LEP distribution (B). The arrows indicate the 
electrodes used for demonstrating time-frequency representation of spectral response to painful stimulation over each of three regions (SI, PS 
and MF). To the contrary, during the distraction condition, the distribution of the alpha ERD was reduced when subject felt less pain (0–1/10 
in pain intensity, A, middle column). However, even with distraction, alpha ERD showed much wider distribution with higher pain intensity 
(5/10, A, right column). Note that the distraction task, with either low or high pain intensity, not associated with the alpha ERD over the PS as 
compared with the attention condition. Adapted from Ohara et al. (2004).
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chronic pain and mechanical hypersensitivity was 
produced by an L5 nerve root ligation. Pain-related 
behaviors were decreased by an electrolytic lesion of 
the ACC in the infl ammatory pain model (Donahue 
et al., 2001). In the neuropathic pain model, mechanical 
hypersensitivity was unchanged while escape/avoidance 
behaviors were decreased (Lagraize et al., 2004).

Studies of experimental pain before and after cin-
gulotomy in a patient with psychiatric disease have 
yielded results different (Davis et al., 1994) from those 
anticipated by the early literature of cingulotomy for 
chronic pain (Foltz & White, 1962). One study demon-
strated increased perceptions of both the intensity and 
unpleasantness of painful hot stimuli post-cingulotomy, 
although the heat pain threshold was increased (Davis 
et al., 1994). That is to say, there was decreased sensi-
tivity to heat at threshold, but increased intensity and 
unpleasantness of supratheshold stimuli.

A similar case study demonstrated that detection 
and pain thresholds for innocuous and noxious 
thermal stimuli were unchanged post-operatively, 
except for a slight increase in cold pain sensitivity 
(Greenspan et al., 2008). Ratings of the same types of 
stimuli were remarkable only for increased unpleasant-
ness and intensity ratings of painful stimuli. These 
two reports demonstrate increased pain intensity 
and unpleasantness despite partial destruction of 
the ACC, unlike the surgical reports. Therefore, the 
increased unpleasantness of experimental pain fol-
lowing cingulotomy contrasts with that of chronic 
pain which was reported to be less “bothersome” or 
unpleasant following cingulotomy (Foltz & White, 
1962).

Another psychophysical study examined the effects 
on experimental pain of anterior capsulotomy in a 
patient with psychiatric disease. This lesion interrupts 
afferent and efferent fi bers to the ACC and other fron-
tal lobe structures (Talbot et al., 1995). Post-capsulotomy 
effects upon thermal pain perception included 
decreased intensity and unpleasantness ratings for 
suprathreshold stimuli. When tested by the cold pres-
sor test, which involves immersing one hand in an 
ice water bath, the patient rated the ice water as less-
painful, but he had much shorter immersion times, 
consistent with decreased tolerance. His behavioral 
reactions, however, were not consistent with decreased 
tolerance, as he was perplexed that his hand came out 
of the water bath so quickly. The capsulotomy may 
have disrupted pathways that altered voluntary motor 
control, such that the subject was no longer able to 
inhibit spinal withdrawal refl exes.

It was suggested that capsulotomy blocks the subcor-
tical input to and so disinhibits anterior cingulate 
which reduces both the intensity and unpleasantness of 
noxious stimuli (Talbot et al., 1995). This interpretation 

could reconcile the decreased ratings following 
capsulotomy with the increased ratings following cin-
gulotomy. The effect of cingulotomy would decrease 
cingulate activity leading to increased intensity and 
unpleasantness. Post-capsulotomy, decreased unpleas-
antness ratings of thermal stimuli, including the cold 
pressor, post-capsulotomy are more consistent with the 
less “bothersome” or unpleasant nature of chronic pain 
which may occur following capsulotomy. Clearly, the 
relationship between the ACC and experimental pain 
versus chronic or cancer pain is more complicated than 
assumed initially (Foltz & White, 1962).

Cingulotomy for Pain
The ACC and associated structures was fi rst suggested 
to be a target for psychiatric surgery by Fulton, based 
on studies in monkeys (Pribram & Fulton, 1954). This 
procedure was initially done as an open procedure 
(Whitty et al., 1952). Subsequently, a lesion of the 
rostral cingulate fasciculus was carried stereotactically 
based on the radiologic visualization of air or contrast 
injected into the frontal horns of the lateral ventricles 
(Fig. 18.5). This approach was adopted for treatment of 
chronic pain and psychiatric disease (Foltz & White, 
1962; Ballantine et al., 1967).

The largest reported series of cingulotomy cases for 
chronic pain treated 123 patients, and included both 
the ventriculogram (air or contrast) era and the MRI era 
(Ballantine & Giriunas, 1988). Procedures were judged 
to be successful if the patient reported no pain without 
any analgesic medication or was comfortable on non-
narcotic analgesics. Among 35 patients with cancer, 
57% had signifi cant relief. Among 98 patients with non-
cancer pain, the largest group was those with failed 
back syndrome (61 patients) of whom 74% benefi ted 
from cingulotomy. Numbers were much smaller in 
other groups such as patients with chronic abdominal 
pain of whom 5/6 were improved or phantom limb 
pain of whom 3/5 reported improvement. Patients 
with pain from post-herpetic neuralgia or post-stroke 
pain were never benefi ted, although numbers were 
very small (Ballantine & Giriunas, 1988).

The advent of modern imaging techniques has 
lead to MRI-guided cingulotomy (Hassenbusch et al., 
1990; Cosgrove & Rauch, 2003). MRI cingulotomy 
is based on radiologic localization with coronal, T1 
weighted images spanning the entire anterior cingulate 
cortex and frontal horns of the lateral ventricles. 
Targets are chosen 2–5 mm above the roof of the lateral 
ventricle, 7 mm from the midline, and 20–25 mm 
posterior to the tip of the frontal horn (Fig. 18.5). 
Microelectrode recording may be used to confi rm the 
location of the cingulate gyrus (Richter et al., 2004) 
which can be directly visualized on the MRI scan. 

 cingulotomy for pain
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A radio-frequency electrode is introduced to the target, 
and the lesions are made. An additional lesion can be 
made above by withdrawing the electrode 5–10 mm 
(Cosgrove & Rauch, 2003).

There are several recent series of cingulotomy for 
treatment of chronic neuropathic pain and cancer pain. 
A study of MRI stereotactic bilateral cingulotomy for 
treatment of three patients with widespread metastatic 
cancer reported signifi cant relief of pain in two out of 
three patients, based on reduction in pain medication 
requirements and subjective pain relief (Wong et al., 
1997). Wilkinson reported 23 patients that underwent 
28 bilateral cingulotomies for chronic neuropathic 
pain, including 5 who had enlargement of the lesion. 
These patients had a variety of pain syndromes, 
including phantom limb pain, “failed back syndrome”, 

vascular claudication, and atypical facial pain. Seventy-
two percent of patients reported signifi cant improve-
ment in their pain, and 55 patients discontinued 
opiates (Wilkinson et al., 1999).

Another series of cingulotomy for pain included 
patients with cancer and nociceptive (n = 6) and neuro-
pathic pain (n = 2) of which four had an excellent result 
and four had a poor to fair result (Pillay & Hassenbusch, 
1992). The remaining patients had pain secondary to 
neurofi bromatosis and post-stroke central pain with 
excellent and poor results, respectively. There do not 
appear to have been complications in this series. Finally, 
transient benefi t was reported in a case of “whole body 
sympathetically maintained pain” (Santo, 1990).

The complications of this procedure are those that 
can occur with any stereotactic neurosurgical procedure 

Fig. 18.5 Magnetic resonance imaging post-cingulotomy. T1 weighted, sagittal (A and B), axial (C) and coronal (D) views of a patient 1-week 
post-cingulotomy. The bright signals surrounded by a gray signal are the lesions (asterisks).
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including intracranial hemorrhage, infection, and 
seizure. In Wilkinson’s series of 23 patients, two 
patients had seizures intra-operatively, and fi ve had 
late seizures. Four of those patients were placed on 
phenytoin with adequate control of their seizures and 
one had pseudo-seizures not requiring treatment. 
No hemorrhages were reported, and no patients died as 
a result of the procedure (Wilkinson et al., 1999).

A lower incidence of complications was reported 
in the large Massachusetts General Hospital series 
(714 cingulotomies, 414 patients) performed for either 
chronic pain or psychiatric disease. There were no 
deaths and no infections. Two patients became hemi-
plegic secondary to acute subdural hematomas, one 
developed a chronic subdural hematoma, and five 
patients had seizures controlled by phenytoin 
(Ballantine & Giriunas, 1988).

Neuropsychological testing of patients with bilateral 
cingulotomy for chronic pain displayed worse execu-
tive function, attention, and self-initiated behavior, 
while language, motor control, and memory were not 
affected (Cohen et al., 1999). Another group reported 
that all patients had a transient fl attening of affect post-
operatively, and 2 of 23 patients had an aphasia that 
resolved in 48 h. One patient exhibited repetitive hand 
washing lasting several days (Wilkinson et al., 1999).

Ablation of the Limbic Thalamus
The management of neuropathic pain has also been 
reported by ablation of thalamic nuclei including the 
central lateral, central median, midline, and the poste-
rior aspect of the median dorsal nucleus as well as 
posterior, limitans and medial pulvinar (Hirai & Jones, 
1989; Jeanmonod et al., 1994, 1996, 2001). A large series 
of patients with neuropathic pain (n = 69) were subject-
ed to this procedure and studied after variable follow-
up (13 months average, range 1–48 months; Jeanmonod 
et al., 1994, 1996). The success of the procedure was 
judged by the patient’s subjective rating, which was 
reported to show 70% relief in peripheral and 60% in 
central neuropathic pain. Overall, 67% of patients were 
reported to show improvement including 20% with 
complete relief. No complications were reported 
(Jeanmonod et al., 1994). However, the effi cacy and safety 
of this procedure for treatment of neuropathic or 
nociceptive pain are unclear (Gybels & Sweet, 1989). 
Lesions of the intralaminar or centromedian nuclei 
may produce successful pain relief and minimize symp-
toms of opiate withdrawal (Gildenberg & DeVaul, 
1985).

The recent series of gamma knife medial thalamoto-
my reported greater than 3 months follow-up (average 
12 months) in 15 patients. Nine patients had greater 
than 50% pain relief of whom four reported complete 

pain relief. Complications occurred in 4/17 cases followed 
over 3 months. There were four cases of hemiplegia. 
Among these four one resolved, two were improving at 
the time of the report, and one died of radiation necro-
sis following a contralateral, medial thalamotomy 
(Young et al., 1995). This is consistent with the risk of 
neurologic complications of functional radiosurgical 
procedures, when employed for treatment of move-
ment disorders (Okun et al., 2001; Kondziolka, 2002).

Linear accelerator thalamotomy targeting the central 
median and parafascicular nuclei for the treatment of 
peripheral and central neuropathic pain has been 
reported in three cases (Frighetto et al., 2004). The lesion 
was made at standard coordinates. Post-operatively 
immediate pain relief was reported in all the three 
cases based on the assessment of the treating physician. 
No complications were reported.

Emerging Approaches to 
Cingulate Surgery
In the fi eld of movement disorders, destructive proce-
dures such as thalamotomy, have been largely replaced 
by deep brain stimulation (DBS). The latter is reversible, 
modifi able, and has a much lower rate of neurological 
defi cits (Schuurman et al., 2000). A single study reports 
the use of DBS deep to area 25 of subgenual ACC for 
treatment of depression (Mayberg et al., 2005). A double 
blind controlled trial of anterior capsular stimulation 
was carried out in six patients with severe, refractory 
obsessive-compulsive disorder (OCD; Nuttin et al., 2003). 
Stimulation reduced core symptoms and Global Severity 
Scores for OCD over follow-up of up to 21 months. The 
degree of improvement does not appear to have been 
statistically signifi cant. These radiosurgical and DBS 
techniques may well have a role in the future of surgi-
cal procedures on the limbic thalamus and cingulum 
bundle for the treatment of pain.

Cingulotomy Alterations in the 
Cognitive Aspects of Pain Processing
The dichotomy between the effects of cingulotomy on 
acute and chronic pain is diffi cult to reconcile. However, 
recent functional imaging studies examining pain and 
expectations may provide some insight (Porro et al., 
2002; Koyama et al., 2005; Chapter 16). Both studies iden-
tifi ed an overlap between pain and expectation-related 
activation in the ACC. Koyama et al. (2005 Chapter 16) 
proposed that this overlap may refl ect a crucial inter-
face between cognitive information and afferent 
processing of nociceptive information. Surgical disrup-
tion of the ACC may substantially alter this interaction. 
Thus, pain with substantial cognitive involvement, 
such as chronic pain, may be more susceptible to 

 cingulotomy alterations in the cognitive aspects of pain processing
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disruption of the ACC than an acute pain that is driven 
largely by a brief burst of nociceptive activity. While 
this explanation is admittedly speculative, the subjec-
tive experience of pain has long been known to be 
heavily infl uenced by cognitive factors. The anatomy 
and physiology of the ACC indicate that it is well posi-
tioned to subserve this critical aspect of pain.
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